
J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

KERNEL METHODS 

Last Updated: November 22, 2012 



Kernel Methods 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

2 

Kernel Methods:  Outline 

¨  Generalized Linear Models 
¨  Radial Basis Function Networks 
¨  Support Vector Machines 

¤ Separable classes 
¤ Non-separable classes 

¨  The Kernel Trick 



Kernel Methods 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

3 

Kernel Methods:  Outline 

¨  Generalized Linear Models 
¨  Radial Basis Function Networks 
¨  Support Vector Machines 

¤ Separable classes 
¤ Non-separable classes 

¨  The Kernel Trick 



Kernel Methods 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

4 

Generalizing Linear Classifiers 

¨  One way of tackling problems that are not linearly separable 
is to transform the input in a nonlinear fashion prior to 
applying a linear classifier. 

¨  The result is that decision boundaries that are linear in the 
resulting feature space may be highly nonlinear in the original 
input space. 
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Nonlinear Basis Function Models 

¨  Generally 

¨  where ϕj(x) are known as basis functions. 
¨  Typically, Φ0(x) = 1, so that w0 acts as a bias. 
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Nonlinear basis functions for classification 

¨  In the context of classification, the discriminant 
function in the feature space becomes: 

¨  This formulation can be thought of as an input space 
approximation of the true separating discriminant 
function g(x) using a set of interpolation 
functions        .  
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Dimensionality 

¨  The dimensionality M of the feature space may be less 
than, equal to, or greater than the dimensionality D of 
the original input space. 
¤ M < D:  This may result in a factoring out of irrelevant 

dimensions, reduction in the number of model parameters, 
and resulting improvement in generalization (reduced 
overlearning). 

¤ M > D:  Problems that are not linearly separable in the 
input space may become separable in the feature space, 
and the probability of linear separability generally 
increases with the dimensionality of the feature space.  Thus 
choosing M >> D helps to make the problem linearly 
separable. 
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Cover’s Theorem 

¨  “A complex pattern-classification problem, cast in a 
high-dimensional space nonlinearly, is more likely to 
be linearly separable than in a low-dimensional 
space, provided that the space is not densely 
populated.” 
— Cover, T.M. , Geometrical and Statistical properties of 
systems of linear inequalities with applications in pattern 
recognition., 1965 
 

 Example 
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Radial Basis Functions 

¨  Consider interpolation functions (kernels) of the form 

¨  In other words, the feature value depends only upon the 
Euclidean distance to a ‘centre point’ in the input space. 

¨  A commonly used RBF is the isotropic Gaussian: 
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Relation to KDE 

¨  We can use Gaussian RBFs to approximate the 
discriminant function g(x): 

¨  where 

¨  This is reminiscent of kernel density estimation, 
where we approximated probability densities as a 
normalized sum of Gaussian kernels. 
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Relation to KDE 

¨  For KDE we planted a kernel at each data point.  
Thus there were N kernels. 

¨  For RBF networks, we generally use far fewer 
kernels than the number of data points:  M << N. 

¨  This leads to greater efficiency and generalization. 
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RBF Networks 

¨  The Linear Classifier with nonlinear radial basis functions can 
be considered an artificial neural network where 
¤  The hidden nodes are nonlinear (e.g., Gaussian). 
¤  The output node is linear. 

RBF Network for 2 Classes 
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RBF Networks vs Perceptrons 

¨  Recall that for a perceptron, the output of a hidden unit is invariant 
on a hyperplane. 

¨  For an RBF, the output of a hidden unit is invariant on a circle centred 
on μi. 

¨  Thus hidden units are global in a perceptron, but local in an RBF 
network. 

RBF Network for 2 Classes 
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RBF Networks vs Perceptrons 

¨  This difference has consequences: 
¤ Multilayer perceptrons tend to learn slower than RBFs. 
¤ However, multilayer perceptrons tend to have better 

generalization properties, especially in regions of the 
input space where training data are sparse. 

¤ Typically, more neurons are needed for an RBF than for 
a multilayer perceptron to solve a given problem. 
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Parameters 

¨  There are two options for choosing the parameters 
(centres and scales) of the RBFs: 
1.  Fixed.   

n  For example, randomly select a subset of M of the input 
vectors and use these as centres.  Use a common scale 
based upon your judgement. 

2.  Learned.  
n  Note that when the RBF parameters are fixed, the weights 

could be learned using linear classifier techniques (e.g., 
least squares).   

n  Thus the RBF parameters could be learned in an outer 
loop, by gradient descent. 
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Motivation 

¨  The perceptron algorithm is guaranteed to provide a 
linear decision surface that separates the training data, 
if one exists. 

¨  However, if the data are linearly separable, there are 
in general an infinite number of solutions, and the 
solution returned by the perceptron algorithm depends 
in a complex way on the initial conditions, the learning 
rate and the order in which training data are 
processed. 

¨  While all solutions achieve a perfect score on the 
training data, they won’t all necessarily generalize as 
well to new inputs. 
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Which solution would you choose? 
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The Large Margin Classifier 

¨  Unlike the Perceptron Algorithm, the Support Vector 
Machine solves a problem that has a unique 
solution:  it returns the linear classifier with the 
maximum margin, that is, the hyperplane that 
separates the data and is farthest from any of the 
training vectors. 

¨  Why is this good? 
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Support Vector Machines 

   SVMs are based on the linear model y(x) = w tφ(x) + b

    

Assume training data x1,…,xN  with corresponding target values

t1,…,tN, tn ∈{−1,1}.

   x classified according to sign of y(x).

 Assume for the moment that the training data are linearly separable in feature space.

    
Then ∃w,b : tny xn( ) > 0 ∀n ∈[1,…N]
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Maximum Margin Classifiers 

¨  When the training data are linearly separable, there are generally an 
infinite number of solutions for (w, b) that separate the classes exactly. 

¨  The margin of such a classifier is defined as the orthogonal distance in 
feature space between the decision boundary and the closest training 
vector. 

¨  SVMs are an example of a maximum margin classifer, which finds the 
linear classifier that maximizes the margin. 

y = 1
y = 0

y = �1

margin
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Probabilistic Motivation 

¨  The maximum margin classifier has a probabilistic motivation. 

y = 1
y = 0

y = �1

margin

 

If we model the class-conditional densities with a KDE using 

Gaussian kernels with variance σ 2, then in the limit as σ → 0, 
the optimal linear decision boundary→ maximum margin linear classifier.
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Two Class Discriminant Function 

   
y(x) = wt x +w

0

    

y(x) ≥ 0→ x assigned to C1

y(x) < 0→ x assigned to C2

   Thus y(x) = 0 defines the decision boundary
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Maximum Margin Classifiers 

y = 1
y = 0

y = �1

margin

   

Distance of point xn  from decision surface is given by:

tny xn( )
w

=
tn w tφ xn( ) + b( )

w

   

Thus we seek:
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Maximum Margin Classifiers 

y = 1
y = 0

y = �1

margin

   

Distance of point xn  from decision surface is given by:

tny xn( )
w

=
tn w tφ xn( ) + b( )

w

  

Note that rescaling w  and b by the same factor 
leaves the distance to the decision surface unchanged.

 

Thus, wlog, we consider only solutions that satisfy:

   

tn w tφ xn( ) + b( ) = 1.

for the point xn  that is closest to the decision surface.
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Quadratic Programming Problem 

y = 1
y = 0

y = �1

margin

   
Then all points xn  satisfy tn w tφ xn( ) + b( ) ≥1

  

Points for which equality holds are said to be active.
All other points are inactive.
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argmin w
2

w

Subject to tn w tφ xn( ) + b( ) ≥1 ∀xn

  This is a quadratic programming problem.

  Solving this problem will involve Lagrange multipliers.
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Quadratic Programming Problem 

y = 1
y = 0

y = �1

margin

   

1
2

argmin w
2

w

,  subject to tn w tφ xn( ) + b( ) ≥1 ∀xn

   

Solve using Lagrange multipliers an :

L(w,b,a) = 1
2

w
2
− an tn w tφ xn( ) + b( )−1{ }

n=1

N

∑

 Always ≥ 0 Always ≥ 0

  

By convention, we maximize L with respect to the an.

Subtracting the Lagrange term → when tnyn >1, an = 0.
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Dual Representation 

y = 1
y = 0

y = �1

margin

   

Setting derivatives with respect to w and b to 0, we get:
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Dual Representation 

y = 1
y = 0

y = �1

margin

    

Substituting leads to the dual representation 
of the maximum margin problem, in which we maximize:

L a( ) = an
n=1

N

∑ − 1
2

anamtntmk xn,xm( )
m=1

N
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∑
with respect to a, subject to:
an ≥ 0 ∀n

antn
n=1

N

∑ = 0

and where k x, ′x( ) = φ(x)tφ( ′x )
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Dual Representation 

   

Using w = antnφ(xn)
n=1

N

∑ ,  a new point x is classified by computing

y(x) = antnk(x,xn)
n=1

N

∑ + b

   

The Karush-Kuhn-Tucker (KKT) conditions for this constrained optimization problem are:
an ≥ 0

tny xn( ) −1≥ 0

an tny xn( ) −1{ } = 0

   
Thus for every data point, either an = 0 or tny xn( ) = 1.

y = 1

y = 0

y = �1

support vectors 
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Solving for the Bias 

   

Once the optimal a is determined, the bias b can be computed 
by noting that any support vector xn  satisfies tny xn( ) = 1.

   

A more numerically accurate solution can be obtained 

by averaging over all support vectors:
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Overlapping Class Distributions 

¨  The SVM for non-overlapping class distributions is determined 
by solving 

y = 1

y = 0

y = �1

� > 1

� < 1

� = 0

� = 0

   

Alternatively, this can be expressed as the minimization of

E∞ y xn( )tn −1( )
n=1

N

∑ + λ w
2

where E∞(z) is 0 if z ≥ 0, and ∞ otherwise.

 

This forces all points to lie on or outside the margins, 
on the correct side for their class.

 To allow for misclassified points, we have to relax this E∞  term.

   

1
2

argmin w
2

w

,  subject to tn w tφ xn( ) + b( ) ≥1 ∀xn
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Slack Variables 

y = 1

y = 0

y = �1

� > 1

� < 1

� = 0

� = 0

   To this end, we introduce N  slack variables ξn ≥ 0, n = 1,…N.

  ξn = 0 for points on or on the correct side of the margin boundary for their class

   
ξn = tn − y xn( )  for all other points.

  

Thus ξn <1 for points that are correctly classified

ξn >1 for points that are incorrectly classified

   
We now minimize C ξn

n=1

N

∑ +
1
2

w
2
, where C > 0.

   
subject to tny xn( ) ≥1− ξn,  and ξn ≥ 0, n = 1,…N

   

Think of ξn  as the amount you must add to tny xn( )  
to push it over to the right side of its margin.
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Dual Representation 

    

This leads to a dual representation, where we maximize

L(a) = an
n=1

N

∑ − 1
2

anamtntmk xn,xm( )
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∑
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∑
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Support Vectors 

   

Again, a new point x is classified by computing

y(x) = antnk(x,xn)
n=1

N

∑ + b

  For points that are on the correct side of the margin, an = 0.

 

Thus support vectors consist of points between their margin and the decision boundary,
as well as misclassified points.

y = 1

y = 0

y = �1

� > 1

� < 1

� = 0

� = 0

 

In other words, all points that are not on 
the right side of their margin are support vectors.
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Bias 

   

Again, a new point x is classified by computing

y(x) = antnk(x,xn)
n=1

N

∑ + b

y = 1

y = 0

y = �1

� > 1

� < 1

� = 0

� = 0

    

Once the optimal a is determined, the bias b can be computed from

b =
1

NM

tn − amtmk(xn,xm)
m∈S
∑⎛

⎝⎜
⎞
⎠⎟n∈M

∑
where 
S is the index set of support vectors
NS  is the number of support vectors
M  is the index set of points on the margins
NM  is the number of points on the margins
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Solving the Quadratic Programming Problem 

¨  Problem is convex. 
¨  Standard solutions are generally O(N3). 

¨  Traditional quadratic programming techniques often infeasible 
due to computation and memory requirements. 

¨  Instead, methods such as sequential minimal optimization can 
be used, that in practice are found to scale as O(N) - O(N2). 

    

Maximize L(a) = an
n=1

N

∑ − 1
2

anamtntmk xn,xm( )
m=1

N

∑
n=1

N

∑

subject to 0 ≤ an ≤C  and antn
n=1

N

∑ = 0
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Chunking 

¨  Conventional quadratic programming solution requires that 
matrices with N2 elements be maintained in memory. 

¨  This becomes infeasible when N exceeds ~10,000. 

     
K O N2( ), where Knm = k xn,xm( )

    
T O N2( ), where Tnm = tntm

    
A O N2( ), where Anm = anam

    

Maximize L(a) = an
n=1

N

∑ − 1
2

anamtntmk xn,xm( )
m=1

N

∑
n=1

N

∑

subject to 0 ≤ an ≤C  and antn
n=1

N

∑ = 0
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Chunking 

¨  Chunking (Vapnik, 1982) exploits the fact that the 
value of the Lagrangian is unchanged if we remove 
the rows and  columns of the kernel matrix where an 
= 0 or am = 0. 

 

    

Maximize L(a) = an
n=1

N

∑ − 1
2

anamtntmk xn,xm( )
m=1

N

∑
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N
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subject to 0 ≤ an ≤C  and antn
n=1

N

∑ = 0
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Chunking 

¨  Chunking (Vapnik, 1982) 
1.  Select a small number (a ‘chunk’) of training vectors 

2.  Solve the QP problem for this subset 

3.  Retain only the support vectors 

4.  Consider another chunk of the training data 

5.  Ignore the subset of vectors in all chunks considered so far that lie on the correct side of 
the margin, since these do not contribute to the cost function 

6.  Add the remainder to the current set of support vectors and solve the new QP problem 

7.  Return to Step 4 

8.  Repeat until the set of support vectors does not change. 

   
Minimize C ξn

n=1

N

∑ + 1
2

w
2
, where C > 0.

  ξn = 0 for points on or on the correct side of the margin boundary for their class

   
ξn = tn − y xn( )  for all other points.

   

This method reduces memory requirements to O NS
2( ), where NS  is the number of support vectors.

This may still be big!



November 19, 2012 

End of Lecture 
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Decomposition Methods 
¨  It can be shown that the global QP problem is solved when all training vectors 

satisfy the following optimality conditions: 

 

¨  Decomposition methods decompose this large QP problem into a series of smaller 
subproblems. 

¨  Decomposition (Osuna et al, 1997) 
¤  Partition the training data into a small working subset B and a fixed subset N. 

¤  Minimize the global objective function by adjusting the coefficients in B 

¤  Swap 1 or more vectors in B for an equal number in N that fail to satisfy the optimality 
conditions 

¤  Re-solve the global QP problem for B 

¨  Each step is O(B)2 in memory. 

¨  Osuna et al (1997) proved that the objective function decreases on each step and 
will converge in a finite number of iterations. 

   

a
i
= 0 ⇔ t

i
y x

i( ) ≥1.

0 < a
i
<C ⇔ t

i
y x

i( ) = 1.

a
i
=C ⇔ t

i
y x

i( ) ≤1.
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Sequential Minimal Optimization 

¨  Sequential Minimal Optimization (Platt 1998) takes 
decomposition to the limit. 

¨  On each iteration, the working set consists of just 
two vectors. 

¨  The advantage is that in this case, the QP problem 
can be solved analytically. 

¨  Memory requirement are O(N). 
¨  Compute time is typically O(N) – O(N2). 
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LIBSVM 

¨  LIBSVM is a widely used library for SVMs 
developed by Chang & Lin (2001). 
¤ Can be downloaded from 

www.csie.ntu.edu.tw/~cjlin/libsvm 
¤ MATLAB interface 
¤ Uses SMO 
¤ Will use for Assignment 2. 
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LIBSVM Example:  Face Detection 

Face 

Non-Face 

Preprocess: 
Subsample & 

Normalize 

Preprocess: 
Subsample & 

Normalize 

 µ = 0, σ 2 = 1

 µ = 0, σ 2 = 1

svmtrain 
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LIBSVM Example:  MATLAB Interface 

model=svmtrain(traint, trainx, '-t 0'); 

[predicted_label, accuracy, decision_values] = svmpredict(testt, testx, model); 

Accuracy = 70.0212% (661/944) (classification) 

Selects linear SVM 



Kernel Methods 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

49 

Relation to Logistic Regression 

�2 �1 0 1 2
z

E(z)

   

The objective function for the soft-margin SVM can be written as:

ESV yntn( )
n=1

N

∑ + λ w
2

where ESV z( ) = 1− z⎡⎣ ⎤⎦+  is the hinge error function,

and z⎡⎣ ⎤⎦+ = z if  z ≥ 0

= 0 otherwise.

   

For t ∈{−1,1},  the objective function for a regularized version 
of logistic regression can be written as:

ELR yntn( )
n=1

N

∑ + λ w
2

where ELR z( ) = log 1+ exp(−z)( ).

 ESV

 ELR
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Kernel Methods:  Outline 

¨  Generalized Linear Models 
¨  Radial Basis Function Networks 
¨  Support Vector Machines 

¤ Separable classes 
¤ Non-separable classes 

¨  The Kernel Trick 
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The Kernel Function 

¨  Recall that an SVM is the solution to the problem 

 

¨  A new input x is classified by computing 

¨  Where S is the set of support vectors. 

¨  Here we introduced the kernel function k(x, x’), defined as 

 

¨  This is more than a notational convenience!! 

    

Maximize L(a) = an
n=1

N

∑ − 1
2

anamtntmk xn,xm( )
m=1

N

∑
n=1

N

∑

subject to 0 ≤ an ≤C  and antn
n=1

N

∑ = 0

   
k x, ′x( ) = φ(x)tφ( ′x )

   
y(x) = antnk(x,xn)

n∈S
∑ + b
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The Kernel Trick 

¨  Note that the basis functions and individual training 
vectors are no longer part of the objective function. 

¨  Instead all we need is the kernel value (like a 
distance measure) for all pairs of training vectors.  

    

Maximize L(a) = an
n=1

N

∑ − 1
2

anamtntmk xn,xm( )
m=1

N

∑
n=1

N

∑

subject to 0 ≤ an ≤C  and antn
n=1

N

∑ = 0

   
where k x, ′x( ) = φ(x)tφ( ′x )
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The Kernel Function 

   

The kernel function k(x, ′x ) measures the 'similarity' of input vectors x and ′x
as an inner product in a feature space defined by the feature space mapping φ(x) :

k(x, ′x ) = φ(x)tφ( ′x )

   If k(x, ′x ) = k(x − ′x ) we say that the kernel is stationary

   
If k(x, ′x ) = k x − ′x( )  we call it a radial  basis function.



Kernel Methods 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

54 

Constructing Kernels 

¨  We can construct a kernel by selecting a feature space 
mapping ϕ(x) and then defining 

¨  1D Example: 

 

   
k(x, ′x ) = φ(x)tφ( ′x ) = φi (x)tφi ( ′x )

i=1

M

∑

−1 0 1
0   

0.25

0.5 

0.75

1   

−1 0 1
0.0

1.0

2.0

Gaussian 

 ′x

  φi (x)

  k(x,0)

  

φi x( ) = exp −
x − µi( )2

2σ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  

k x,0( ) = exp −
x − µi( )2

2σ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

exp −
µ2

i

2σ 2

⎛

⎝⎜
⎞

⎠⎟i=1

M

∑
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Constructing Kernels 

 
¨  Alternatively, we can construct the kernel function 

directly, ensuring that it corresponds to an inner 
product in some (possibly infinite-dimensional) 
feature space. 
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Constructing Kernels 

  k(x) = φ(x)tφ( ′x )

  Example 1: k(x,z) = xtz

  Example 2: k(x,z) = xtz + c,  c > 0

  
Example 3: k(x,z) = xtz( )2
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Kernel Properties 

¨  Kernels obey certain properties that make it easy to 
construct complex kernels from simpler ones. 



Kernel Methods 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

58 

Kernel Properties 
Combining Kernels

Given valid kernels k1(x,x�) and k2(x,x�) the following kernels
will also be valid:

k(x,x�) = ck1(x,x�) (6.13)

k(x,x�) = f(x)k1(x,x�)f(x�) (6.14)

k(x,x�) = q(k1(x,x�)) (6.15)

k(x,x�) = exp(k1(x,x�)) (6.16)

k(x,x�) = k1(x,x�) + k2(x,x�) (6.17)

k(x,x�) = k1(x,x�)k2(x,x�) (6.18)

k(x,x�) = k3(�(x),�(x�)) (6.19)

k(x,x�) = xT Ax� (6.20)

k(x,x�) = ka(xa,x
�
a) + kb(xb,x

�
b) (6.21)

k(x,x�) = ka(xa,x
�
a)kb(xb,x

�
b) (6.22)

with corresponding conditions on c, f, q,�, k3,A,xa,xb, ka, kb

Vasil Khalidov, Alex Kläser Bishop Chapter 6: Kernel Methods

    

where c > 0, f (⋅) is any function, q(⋅) is a polynomial with nonnegative coefficients, φ(x) is a mapping from x → M ,

k3  is a valid kernel on M , A is a symmetric positive semidefinite matrix, xa  and xb  are variables such that xt = xt
a,x

t
b( )  

and ka,kb  are valid kernels over their respective spaces.
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Constructing Kernels 

¨  Examples: 

  
k(x, ′x ) = xt ′x + c( )M ,c > 0

  
k(x, ′x ) = exp − x − ′x

2
/ 2σ 2( )  

Corresponds to infinite-dimensional feature vector 

  (Use 6.18)

 (Use 6.14 and 6.16.)
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Nonlinear SVM Example (Gaussian Kernel) 

Input Space 

  x1

  x2
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Kernel Methods:  Outline 

¨  Generalized Linear Models 
¨  Radial Basis Function Networks 
¨  Support Vector Machines 

¤ Separable classes 
¤ Non-separable classes 

¨  The Kernel Trick 



Lagrange Multipliers 
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Lagrange Multipliers (Appendix C.4 in Bishop) 

¨  Used to find stationary points of a function 
subject to one or more constraints. 

¨  Example (equality constraint): 

 

¨  Observations: 

rf(x)

rg(x)

xA

g(x) = 0 Joseph-Louis Lagrange 
1736-1813 

   
Maximize f x( )  subject to g x( ) = 0.

   
1. At any point on the constraint surface, ∇g x( )  must be orthogonal to the surface.

   

2. Let x *  be a point on the constraint surface where f (x) is maximized.
    Then ∇f (x) is also orthogonal to the constraint surface.

   

3. → ∃λ ≠ 0 such that ∇f (x)+ λ∇g(x) = 0 at x * .
     λ  is called a Lagrange multiplier.
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Lagrange Multipliers (Appendix C.4 in Bishop) 

¨  Defining the Lagrangian function as: 

    we then have 

 

    and 

rf(x)

rg(x)

xA

g(x) = 0

   ∃λ ≠ 0 such that ∇f (x)+ λ∇g(x) = 0 at x * .

   
L x,λ( ) = f (x)+ λg(x)

   
∇xL x,λ( ) = 0.

   

∂L x,λ( )
∂λ

= 0.
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Example 

¨  Find the stationary point of 

   subject to 
g(x1, x2) = 0

x1

x2

(x?
1, x

?
2)

   
L x,λ( ) = f (x)+ λg(x)

  
f x1,x2( ) = 1− x1

2 − x2
2

  
g x1,x2( ) = x1 + x2 −1= 0
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Inequality Constraints 

¨  There are 2 cases: 

1.  x* on the interior (e.g., xB) 

n  Here g(x) > 0 and the stationary condition is simply 

n  This corresponds to a stationary point of the Lagrangian where 
λ= 0. 

2.  x* on the boundary (e.g., xA) 

n  Here g(x) = 0 and the stationary condition is 

n  This corresponds to a stationary point of the Lagrangian where 

λ> 0. 

¨  Thus the general problem can be expressed as 
maximizing the Lagrangian subject to 

rf(x)

rg(x)

xA

xB

g(x) = 0
g(x) > 0

   
Maximize f x( )  subject to g x( ) ≥ 0.

   ∇f (x) = 0.

   ∇f (x) = −λ∇g(x), λ > 0.

  

1. g(x) ≥ 0
2. λ ≥ 0
3. λg(x) = 0

   
L x,λ( ) = f (x)+ λg(x)

Karush-Kuhn-Tucker (KKT) conditions 
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Minimizing vs Maximizing 

¨  If we want to minimize f(x) subject to g(x) ≥ 0, 
then the Lagrangian becomes 

   

L x,λ( ) = f (x)− λg(x)

with λ ≥ 0.
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Extension to Multiple Constraints 

¨  Suppose we wish to maximize f(x) subject to 

¨  We then find the stationary points of 

   subject to  

    

gj (x) = 0 for j = 1,…,J

hk (x) ≥ 0 for k = 1,…,K

   
L x,λ( ) = f (x)+ λ jg j (x)

j=1

J

∑ + µkhk (x)
k=1

K

∑

   

hk (x) ≥ 0
µk ≥ 0
µkhk (x) = 0


